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ON THE DYNAMICS OF SHORT PRESSURE PROBES: SOME DESIGN

FACTORS AFFECTING FREQUENCY RESPONSE

by Ted W. Nyland, David R. Englund, and Robert C. Anderson

Lewis Research Center

SUMMARY

Frequency response measurements of 2.54-centimeter-long probes with 0. 325- and

0.160-centimeter diameters are described. Comparison of the measured response and

that predicted from existing analyses showed good correlation. The results indicate that

the Bergh and Tijdeman equations accurately predict the response of probes which in-

clude extension tubes for measuring time-average pressure. It is shown that the use of

some type of baffle for particle impact protection which involves an enlargement of the

entrance flow area does not reduce the resonant frequency of the probe. A computer pro-

gram for calculation of probe response based on the Bergh and Tijdeman equation is

given in the appendix.

INTRODUCTION

Investigations of the dynamic stall characteristic of turbojet engines have placed

great emphasis on the measurement of transient total pressure. Experimenters wish to

determine how and at what rate stall propagates through an engine. To obtain this in-

formation, many transient total pressure probes are located in the inlet and in between

stages of the compressor on the engine under test. In general, the requirements placed

on these transient measuring systems include a frequency-response flat (amplitude ratio

within +5 percent) to at least 500-hertz, operation in airstream temperatures ranging

from room temperature to approximately 800 K and reliable operation where particulate

matter may be entrained in the airstream. In addition, it is of interest to measure the

average total pressure at each probe location. The average pressure may range be-

tween a few to 200 newtons per square centimeter, and the transient pressure amplitudes

may reach 30 percent of these values.

Measuring systems used in these investigations have consisted of probes with inter-



nally mountedminiature pressure transducers connected to short total head tubes (ref. 1).

Such probes are generally water cooled so that the transducer is maintained at a mod-

erate and relatively constant temperature. To protect the transducer from damage by

the entrained particles in the airstream, the transducers have been mounted at right

angles to the axis of the probe, or offsets or baffles have been included in the internal

geometry of the probe. The measurement of average total pressure has been accom-

plished by connecting each probe through small-diameter tubing to high-accuracy low-

frequency-response pressure instrumentation located external to the engine. This

approach has proved to be preferable to relying on the average value of the output of the

miniature (transient) pressure transducers mainly because the zero stability of these

transducers is not compatible with the accuracy required for these data. The problem

faced by the probe designer is how to incorporate these features of particle impact pro-

tection and average total pressure measurement into the probe design without degrading

the transient response of the measuring system.

The purpose of this report is to present practical design information related to op=

timizing the transient response of such probes. The information contained herein is the

result of an experimental program at the Lewis Research Center. The major objectives

of this program were

(1) To measure the frequency response of simulated transient pressure probes

(2) To measure the effect on response of variations in probe geometry aimed at pro-

viding particle impact protection and average pressure measuring capability

(3) To correlate measured response with existing theoretical analyses on transient

response of probes.

There are a number of theoretical analyses that can be used to predict the transient

response of simple probe configurations. Estimates of the natural frequency can be ob-

tained by using the simple quarter wavelength (organ pipe) and other tube-and-volume

analyses found in many textbooks (e. g., see refs. 2 and 3). These analyses are based

on linear second-order models of the system. More rigorous analyses have been done

by Iberall (ref. 4) and more recently by Bergh and Tijdeman (ref. 5). The Iberall

analysis is limited to a single tube and volume; Bergh and Tijdeman extended this analy-

sis to a series connection of a number of tubes and volumes. These later analyses are

not based on second-order system models and consequently do not yield a simple expres-

sion for a resonant frequency. However, they do permit the calculation of the amplitude

ratio and phase shift as a function of excitation frequency from which the frequency for

maximum amplitude ratio, that is, the resonant frequency, can be obtained. In either

case the useful frequency range of the probe is that portion of the frequency spectrum

for which the amplitude ratio is equal to one to within some acceptable tolerance (+5 per-

cent for our purposes). In cases where the damping is negligible, which is generally

true for the probes considered in this report, the frequency at the 5-percent tolerance
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limit is approximately equal to 20 percent of the resonant frequency.

The analyses of references 4 and 5 have been verified experimentally for frequencies

up to about 2000 hertz (refs. 5 and 6). Recently, Goldschmied (ref. 7) has further veri-

fied the analysis of reference 4. The data contained herein show that references 3 and

4 accurately predict the response of the short tubes tested in this work.

PROBE CONFIGURATIONS

The probe designs used in this work were intended to simulate only the internal geo-

metry of typical total pressure probes. The outside diameter, wall thickness, and flat

end of the probes were chosen for ease of mounting in the test apparatus and do not rep-

resent good design practice for total pressure probes. The exterior and inlet geometries

of probes for actual measurements in a flowing stream should be governed by such con-

siderations as flow angle variations, pressure gradients, probe blockage, etc.

Straight Probe

The basic (straight) probe tested in this work consisted of a short straight tube of

constant inside diameter terminated with a cayity formed by the transducer mounting

(see fig. 1). As the volume ratio, the ratio of cavity volume to tube volume, is a pa-

rameter in the analytical equations, provision was made for varying the cavity volume.

In this report, the straight probes will be designated as either A1 or A2, referring to

the diameters 0.325 or 0.160 centimeter, respectively, followed by a number corres-

ponding to the volume ratio. A miniature quartz piezoelectric pressure transducer was

used in this probe.

In order to provide a means to measure the average total pressure, the probe was

provided with taps drilled at right angles to the probe axis as shown in figure 1. The tap

diameter was either 0.150 or 0.071 centimeter. These matched the inside diameters of

tubing used when te,_ :ing the effects of average pressure measuring systems on probe

response. The lengths of the average pressure tubing tested were 15, 61, and 183 centi-

meters.

In one variation of the basic probe design, the transducer was mounted at right

angles to the probe axis as shown in figure 2. The cavity volume was cylindrically

shaped with its axis perpendicular to the tube axis. A'miniature semiconductor strain

gage pressure transducer, 0. 317 centimeter in diameter, was used in this probe con-

figuration.



Baffled Probe

The baffled probe tested in this work was designed to provide particle impact pro-

tection for the transducer. The baffle was built into the opening of the probe as shown

in figure 3. The baffle consisted of an annular passageway connected through a set of

holes to the inside tube. Four similar configurations were tested, each having different

ratios of annular area to tube area and hole area to tube area as shown in the figure.

For baffle probes B1, B2, and B3, a set of 5 holes, 0.139 centimeter in diameter,

were drilled between the annulus and probe tube. For probe B4, two sets of holes were

used. The volume ratio based on inside tube length was 0.118. The pressure transducer

was of'the miniature quartz variety.

TEST APPARATUS AND PROCEDURE

A sinusoidal pressure generator developed at the Lewis Research Center was used

to determine the frequency response of the probes. A drawing of the generator is shown

in figure 4, and a detailed description of the generator is given in reference 8. The gen-

erator consists of a 2.54-centimeter-diameter closed tube driven by an annular shape

air jet. The frequency of oscillation is varied by moving a tuning piston in the tube,

effectively changing the tube length. Frequencies between 300 and 5000 hertz can be ob-

tained with the generator. The probes are flush mounted to the inside surface of the

resonator tube. A second pressure transducer is flush mounted directly opposite the

probes and is used as a reference for both the amplitude and phase angle measurements.

All probes were tested at atmospheric pressure and at room temperature with nominal

pressure amplitudes of 0.5 newton per square centimeter (5 percent of atmospheric)

peak to peak. The estimated error in the amplitude ratios, which are less than 15 deci-

bels is 2 to 3 percent. As the amplitude ratios increase beyond 15 decibels, the error

in the ratio increases to 10 to 20 percent at 30 decibels. Estimated error for the fre-

quency measurement is +1 hertz and for the phase angle measurement is +5 °.

TEST RESULTS

Effects of Volume Ratio on Probe Response

The measured frequency response of probe A1-0.027 is shown in figure 5. Also

shown is the analytical response curve for the probe as calculated from reference 4.

(The values of fluid parameters used in all calculations are given in table I. ) The aria-
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lyrical curve includes an end correction of 8D/3_, as suggested in reference 3, added to

the length term (D is tube diameter). Without the end correction, the analytical curve

is the same shape, but it has a resonant frequency approximately 10 percent higher than

the curve shown. Generally, the measured resonant frequencies of all the A1 and A2

probes were within 5 percent of t_he end corrected analytical values.

The effects of changes in volume ratio on the resonant frequency are shown in fig-

ure 6. Plotted is the percent reduction in resonant frequency as a function of volume

ratio as calculated from reference 4 with end correction. The reduction in resonant

frequency is calculated as the difference between the resonant frequency of a probe with

(Fv) and without (Fo) a volume at the transducer end. Calculations indicate that the re-

sonant frequency is slightly dependent on probe diameter. For the two probe diameters

tested in this program, the resonant frequency for the same length and volume ratio dif-

fered by approximately 3 percent. For example, F O for the A1 probe was 3000-hertz

and for the A2 probe, 3100 hertz. As this is not a significant difference, the analytical

curve plotted in figure 6 is the average value for the A1 and A2 probes. Also plotted in

the figure are experimental data from a number of straight probe tests. For volume

ratios less than 0.2, the experimental data are within 5 percent of the theoretical curves.

Thus, it is concluded that for volume ratios less than 0.2, the response of a straight

probe can be predicted to within 5 percent by the analysis of reference 4.

It is also of interest to determine how closely the quarter wavelength equation pre--

dicts the resonant frequency. The quarter wavelength equation with the 8D/3_ length

correction is

where

f resonant frequency

c adiabatic velocity of sound

L length of tube

D inside diameter

For short probes with zero volume ratio, this equation-predicts resonant frequencies

which are higher than the reference 4 predictions by 2 to 5 percent. This agreement is

adequate for most probe design work. If the probe has an appreciable volume ratio, a

correction can be obtained from figure 6.

In this work, no attempt was made to compare the experimental results with pre-



dictions from other existing simplified tube-and-volume analyses. It is expected that

many of these would also be adequate for probe design work, but would be of no advan-

tage over the simple procedure outlined in the preceding paragraph.

From figure 6, it is apparent that a volume at the transducer end of the probe will

decrease the resonant frequency of a straight probe. To minimize this decrease, a

volume ratio of less than 0.1 should be considered as a reasonable goal for a probe de-

sign. This would result in a resonant frequency decrease of less than 10 percent from

the ideal case. It is obvious that a shorter tube length could be used to increase the re-

sonant frequency so long as the L/D ratio is greater than 1. However, the mounting of

a transducer in the probe will almost always result in some volume at the end of the

probe. Thus, as the probe length is decreased, the volume ratio will increase, thereby

reducing, to some extent, the gain in frequency response achieved by a shorter probe.

The frequency response of the probe with the pressure transducer mounted at right

angles to the probe eenterline is shown in figure 7. The analytical response from refer-

ence 4 with an end correction is also shown. A comparison of figure 7 with the curves in

figure 5 indicates that the basic response of the probe has not been altered by the right

angle transducer mount.

The Effects of Average Pressure Tubing on Probe Response

The response of probes with two different sizes of average pressure tubing is shown

in figure 8. The basic probe was the A1-0.027; the average pressure tube was 61 centi-

meters long and was closed at the end. One average pressure tube had a 0.071-

centimeter inside diameter; the other had a 0.150-centimeter inside diameter. The re-

sponse of the probe with the smaller tube is negligibly different in the usable frequency

range from the probe without the average pressure tube (see fig. 5 for comparison). The

only apparent difference is a slight reduction in the peak amplitude ratio. The effect of

the larger diameter tube is more pronounced. The peak amplitude ratio is considerably

lower and the slope of the phase angle curve is reduced in the region of the resonant fre-

quency. These changes are similar to the effects of added damping in a linear second-

order system. One other effect is present: the amplitude ratio plot for this probe has

small but measurable cyclic variations as a function of frequency. These variations are

caused by standing waves in the average pressure tube interacting with the probe.

Other tests were run with average pressure tubing in which the end of the tube was

open to the atmosphere or terminated in a volume of 1000 cubic centimeters. The re-

sults were similar to the closed tube results with the exception that the phase of the

variations in amplitude ratio was reversed. Where a maximum amplitude ratio occurred

6



for a closed tube, a minimum amplitude ratio occurred for the open and volume ter-

minated tubes.

The cyclic variation in amplitude ratio for a probe with average pressure tubing can

be predicted from the Bergh and Tijdeman equations of reference 5. This is shown in

figure 9 where the computed response, using the subroutines in the appendix, is compared

with the experimental data for an A1-0.108 probe which includes an average pressure

tube 61 centimeters long with a 0. !50-centimeter inside diameter, closed at its end.

Figure 9(a) shows the response through the first resonance, and figure 9(13)shows an ex-

panded plot of the response below 1 kilohertz. For the analytical curve, itwas assumed

that the average pressure tubing was connected directly intothe cavity volume. The

agreement between the predicted response and the measured data is good. Examination

of figure 9(a)will show that successive peaks or valleys in the amplitude ratio curve are

separated by about 270 hertz, which is roughly equal to the half-wavelength frequency of

a 61-centimeter tube in room-temperature air. This supports the conclusion that the

variations in the amplitude ratio of the probe are caused by standing waves in the average

pressure tube.

These cyclic variations in amplitude ratio represent a source of error in transient

measurements. Itis therefore of interest to determine how to limit the magnitude of

these variations to within acceptable bounds. This might be done by reducing the diam-

eter of the average pressure tube to the extent that viscous losses prevent the buildup of

standing waves. The requirement for this is that D < V_Iz/p_f (ref. 2, p. 229) where

D is the inside diameter of the tube, Iz is the dynamic viscosity, P is the density, and

f is the frequency (inHz). This approach leads to tube diameters of less than 0.025

centimeter, small enough to be prone to plugging. Such diameters are apparently

smaller than necessary based on the results shown in figure 8. This is probably because

this approach does not take intoaccount that the pressure waves in the averaging tube

must interact with the probe impedance to produce measurable variations. The probe

impedance is relatively low because of large diameter of the probe.

An alternativeapproach is to determine a relation between the magnitude of the

variations in amplitude ratio and the geometry of the probe and average pressure tube.

This was done by calculatingthe response of a number of differentgeometries and em-

piricallyfinding a geometric parameter that correlates with the magnitude of the cyclic

deviations in amplitude ratio. The geometries covered in this calculationare shown in

table If. The calculationswere done only for air at atmospheric pressure and room

temperature.

Figure 10 shows the results of these calculations. The average value of the peak-

to-peak cyclic deviations in amplitude ratio over the usable frequency range (inthis

case up to 600 Hz) for each geometry is plotted against an empirical geometry param-

eter. The parameter found to give a reasonable correlation is Dp(L A + 13)/1)2, where



Dp is the inside diameter of the probe, L A is the length, and D A is the inside diam-

eter of the average pressure tube (all dimensions are in centimeters). The line drawn

to the right of all the data points represents a conservative estimate of the geometry

parameter necessary to insure that the cyclic deviations in the amplitude ratio are less

than a given value. For example, to insure that these deviations are less than 2 percent

(i. e., a +1 percent error in amplitude ratio), a geometry parameter of at least 2000 is

necessary. Thus, an A1-0 probe with an average pressure tube diameter of 0.150 centi-

meter would require a tube at least 125 centimeters long, but, if the tube diameter were

0.071 centimeter, the minimum length required would be 18 centimeters.

Also plotted in figure 10 are two measured data points for probes A1-0. 027 and

A1-0.108. The agreement between these measured data points and the calculations in-

dicate that the results of figure 10 are applicable to probes with volume ratios up to at

least 0.1.

Effects of Entrance Baffles on Probe Response

Test data for the baffled probe configurations are shown in figure 11, and the meas-

ured resonant frequencies are listed in figure 3. For comparison purposes the measured

resonant frequency of an A1-0.108 probe is also listed in figure 3. (The volume ratio

for the baffled probe configurations is approximately 0.13. ) These data indicate that, if

the entrance annulus and hole areas are larger than the probe tube area, this baffle con-

figuration does not degrade the frequency response of the probe.

The slight increase in resonant frequency with increasing baffle area ratios is in

qualitative agreement with the results of reference 5. (See figs. 19 and 20 of that ref. )

The reference 5 data show that for a long tube-and-volume pressure transmission sys-

tem, the resonant frequency can be nearly doubled by replacing half of the tubing length

at the entrance end with a tube whose diameter is 1.5 times the diameter of the original

tube. This would seem to imply that similar increases in resonant frequency might be

obtainable for baffled probes of the type tested here by optimum choice of baffle area

ratios and relative length. Preliminary tests of this concept indicate that moderate in-

creases (10 to 20 percent) in resonant frequency are possible. However, practical limits

on baffle size are such that a large increase in resonant frequency is not possible.

CONCLUDING REMARKS

The frequency response of short transient total-pressure probe geometries has been

measured. Variations in geometry intended to provide particle impact protection and
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time-average total-pressure measuring capabilityhave been studied to determine their

effecton probe response. The measured response data have been compared with re-

sponse predictions from various theoretical analyses. The results of this work are pre-

sented for the purpose of facilitatingthe design of practical transient totalpressure

probes for turbojet engine research.

The analyses of Iberall (ref. 4) and Bergh and Tijdeman (ref. 5) adequately calcu-

latethe amplitude ratio and phase angle versus frequency for the probes tested. The

prediction of the resonant frequency is within 5 percent for probes with resonant fre-

quencies up to 3 kilohertz.

A value of 0.1 for the ratio of transducer cavity volume to probe tube volume was

feltto be a reasonable design goal; this volume ratio decreases the probe resonant fre-

quency by less than 10 percent from the ideal case of zero transducer cavity volume.

For the probes tested, the simple, well-known quarter wavelength equation was

adequate for calculatingprobe resonant frequency. Ifused with a length correcti_)nof

8D/3_ where D is probe inside diameter, this equation could predict the resonant

frequency of probes with zero volume ratioto within 10 percent. Further corrections for

volume ratio can be made by information presented herein.

The method of using a small diameter tube between the transducer end of the probe

and remote steady-state pressure instrumentation in order to measure time-average

totalpressure was tested. An empirical parameter involving the probe diameter and the

average pressure tube diameter and length was found which adequately correlates with

interaction effectsbetween the average pressure tube and the probe. A design for which

the value of this parameter is greater than 2000 will insure thatthe error due to this

interaction is less than ±1 percent for a probe operated at atmospheric pressure and

room temperature.

A baffle design for preventing particles entrained in the air stream from damaging

the transient pressure transducer was tested. Itwas shown thatwith proper entrance

area this baffledesign does not degrade the frequency response of the probe.

Lewis Research Center,

National Aeronautics and Space Administration,

Cleveland, Ohio, September 28, 1970,
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APPENDIX - COMPUTER SUBROUTINE FOR CALCULATION OF THE FREQUENCY

RESPONSE OF A MULTIPLE TUBE-VOLUME SYSTEM

For computing purposes, a system of tubes and volumes as in figure 12 was as-

sumed. Using the Bergh and Tijdeman (ref. 5) results as a basis, the following equations
were used for calculation:

W.

cosh (q_jLj) + V---_(1

tj

+ aj)nj_jLj sinh (_jLj)

where

+ D_+l_j+lJ2(otj+l)Jo(Otj)sinh(_jLj)tosh(_j+lLj+l) - _t1-1D_jJo(_j+l)J2(_ j) sinh(_Oj+lLj+ 1)

nj=
1

1 + _'- I J2 (otj Vf__)

The variables are defined as follows:

lO



Engineering Computer
symbol symbol

D D

f FRE_

Jn ........

L XL

P

Pr P

Ps AM PRES

vt

vv c

V'IS

Ps RHO

DVDP

Definition

tube diameter

frequency

Bessel function of first kind of order n

tube length

amplitude of pressure distributions

Prandtl number (in subroutine usually equal to 0.7)

mean pressure

tube volume

cavity volume

specific heat ratio

fluid dynamic viscosity

mean mass density

dimensionless increase in cavity volume due to containment

wall deflection

angular frequency

defines tube and volume

The FORTRAN IV subroutine using the preceding equations may be referenced as

follows:

CALL AMPPHS(FREQ, A, PA, I,N)

FREQ is the pressure oscillation frequency for which the amplitude ratio and phase

angle are to be calculated and must be specified before the CALL. The program places

the amplitude ratio P(I)/P(0) in A and the phase angle in PA. N is the total number of

series-connected tube-volume systems.

The system parameters must be put into the program through two common blocks

referenced as follows:

COMMON/GEOMTY/D(IO), XL(10), V(10), DVDP(IO)

COMMON/THERMO/GAMMA, P(10), P,/-IO(10), VIS(10), AM PRES

11



The program accepts as many as 10 series-connected systems with diameter (D),

length (XL), volume (V), Prandtl number (P), and volumetric displacement (DVDP)

specified in one block. The thermodynamic properties density (RHO), viscosity (VIS),

ambient pressure (AMPRES), and specific heat ratio (GAMMA) are specified in a second

block.

The program used for generating the Bessel functions is limited in use to Bessel

functions of integer order with arguments of the form C(1 - i) where C is a real constant.

The listing for the subroutines follow:

C
C

C
C
C

C

C
C
C

I0

SUBROUTINE AMPPHS(FREQ,A,PA,I,J)

THIS RC)LTINE CALCULATES THE AMPLITUDE RATIO (A| P(I)/P{O)
AND PHASE ANGLE (PA) FOR A SERIES CONNECTION OF J TUBE-VOLUME
SYSTEMS GIVEN FREQUENCY 'FREQ'.

THE SYSIE_ GEOMETRY IS ENTERED THROUGH COMMON BLOCK /GEOMTY/.

THE THERM3DYNAMIC CON]ITIONS ARE ENTERED THROUGH COMMON BLOCK

DIMENSION PRATIO(IO)

CDMMON/GEOMTYID(LO),XL(IO),V(IO),DVDP(IO)

CDMMON/THERMD/GAMMA,P{IO) ,RHO(IO),VIS(IO) ,AMPRES
COMM3N/XFRE_/FREQ L

COMPLEX PRATIOtRECUR S
FREQI = FREQ

RECURS = I.O
DO 10 M=I,IO
PRATIO(M } = O.O

N = J
C

C CALCULAIE ._UCCESSIVE PRESSURE RATIOS
C

DO 20 K= 1,N
20 CALL RAIl O{PRATIO, J+I-K, Jl
C

C CALCULATE REQUIRED RATIO BY MULTIPLYING
C

DO30 K = I,I
30 RECURS = RECURS*PRATIO(K|

A= CABS{RECURS)

PA: ATAN2(AIMAG{RECURS),REAL(RECURS))

CONVERT RADIANS TO DEGREES

-360.+PA
PA= PA*57.2957795
IF(PA.GT.O.O} PA =
RETURN
END

APPROPRIATE

ITHERMOI,

PRESSURE RATIOS
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$1BFTCXRATTO DECK

C

C
C

C
C

1
3

5

2
6

SUBRDUIINE RATIO(PRATI OtJtK)

THIS PROGRAM CALCULATES THE PRESSURE RATIO P(JI/P(J-I).

DIMENS
COMMON

COMMON

COMMON
COMPL E

CTPHII,
Pl = 3
VRATIO

RFREQ
IF( V( J
CORRC T

GOT03

IO_ PRATIO(IO)yVRATIO(IO),CORRCT(IO)

/GEOMTY/D(IO) tXL(IOI tV(lO) tDVDP(IO)

/THERMO/GAMMA,P(IO) tRHO(IO)tVIS(IO) tAMPRES
/XFREQ/FREQ

X P HI, JRA T, POLY tPOLRAT,CCOSH,C SINH, PRAT IO,TE RMI, T ERM 2, TERM3,
TPHI2,JRATIO
.1415927

(J) = V(J)/(PI_D(j)w_w_2_XL(J)/4.)
= 2._PI_FREO

).NE.O. O)GOTOI
(J) = l.O

CDRRCT(J) = 1.0 + (DVDP(J)_AMPRES/V(J))
CONTINUE

IFfJ.EQ.K) GO TO 5

POLRAT = CSQRT(POLY(JI/POLY(J+I))
RHORAT = SQRT(RHO(J+I)/RHOIJ) |

VDLRAT = D(J+X)*_2/(D(J|*_2)
TPHI2 = PHI{J+I)

JRAT = CSQRT(
JJRATIO (CSQRT(CMPLX(O, 0,- (RFREQ_D (J+l) _ww_2WWRHO(J+l)/
J( 4.0*VlS(J+l))))))l
JJRATIO (CSQRT(C MPLX (O. 0,- (RFRE Q*D (J )**2*RHO(J )/

J( 4.0. VIS(J )))))l)
TPHII = PHI(J)

TERM1 = CCOSH(TPHIX*XL(J))
TERM2 = VRATIO(J)_CORRCT(J)_XL(J)*TPHII_POLY(J)_CSINH(TPHII_XL(J))

IF(J.EQ.K) GO TO 2

TERM3 = (CSINH(TPHIX*XL(J))/CSINH(TPHI2*XL(J+!)))*
T V] LRAT_RHORA T_ JRATWWPOL RAT_

T (CCOSH( TPHI 2_XL (Je I) )-PRATT O(J+l) l

GO TO 6
TERM3 = CMPLX(O.O,O.O)
CON TIN UE

PRATIC)(J) = I.O/(TERML+TERM2+TERN3)

RETLRN
END

$IBFTC XJRATO DECK

COMPLEX FUNCTION JRATIO(CARG)

C
C

C TFIS ROUTINE CALCULATES THE RATIO OF THE BESSEL FUNCTION OF THE

C FIRST KIND, ]RDER 2 TO THE BESSEL FUNCTION OF THE FIRST KIND,
C ORDER 0 WIIH COMPLEX ARGUMENT.
C

13



COMPLEX FM_QSUM,PSUM_XPSUM(2) ,XQSUM(2) ,XJ[2),RATIO,XX,Y
IY, l

COMPLEX J 2,JO,JRATI O,CARG
CDMMON /S I/X, Y,PSUM,QSUM
COMMON /FMNAM/FM

DATA P I/3.1415927/tM/-I/,Z/(O.O,l.O)/
IF(REAL(CARGI.GT.30. O) GO TO 40

C

C IF THE REAL PART OF THE ARGUMENT I S GREATER THAN 30 USE IS MADE OF
C HANKELS ASYMPTOTIC EXPANSIONS (SEE NBS HANDBOOK OF MATHEMATICAL

C FUNCTI]NS AMS NO. 55} TO CALCULATE THE BESSEL FUNCTION RATIO. THE P

C AND Q COEFFICIENTS USED IN THE EXPANSIONS ARE CALCULATED USING THE
C SERIES SUBROUTINE.
C

GO TO 50
40 X = REAL(CARG)

Y =-X

DO 2 J=1,2
M=M ÷J
X) = FLOAT(M)

FM = CMPLX(XI,O.O)
CALL SERIES
XPSUM(J| = PSUM

2 XQSUM(J) = QSUM

DO 3 K :I, 2
A = X _ (0.75 - FLOAT(Kll_PI

XX = XPSUM(K) * COS(A) - XQSUM(KI * SIN(A)

YY = {XPSUM(K) • SIN(A) + XQSUM(K) • COS(All • Z
3 XJ(K} : XX ÷ YY

RATIO = X J(2) / XJ(1)
JRATIO = RATIO
M =-I

GO TO 30

20 CALL ZEEBE S(JO,O,CARG)

CALL ZEEBES(J2,2,CARG)
JRATIO = J2/JO

CONTINUE
RETURN

END

3O

$1BFTC SERIE DECK

SUBROUTINE SERIES
C

C

C THIS ROLTINE CALCULATES THE VALUE OF THE SERIES NEEDED FOR
C HANKELS ASYMPTOTIC EXPANSION
C

C IN CALCULATING P(J) AND Q(J) NUMBERS WITH EXPONENTS LESS THAN -38
C MAY OCCUR. THIS PROGRAM USES A BUILT-IN ROUTINE WHICH SETS P(J)
C AND/OR Q(J) EQUAL TO ZERO WHENEVER THESE SMALL NUMBERS OCCUR.
C
C

C

14



2O

3O

5O
55

80
90

I00
ii0

COMPLEXZ,MU, PSUMtQSUM,FMtP(50I _Q(501
COMMON ISl IX,Y,P SUM, OSUM
COMM3N /FMNAM/FM

PSUM = (0.,0.)

QSUM = (0.,0.)
MU =4. WWFM_2

Z = CMPLX(X,Y)
DO I00 J=l,50

N = J-]
FN --N

IF(N .NE. O) GO TO 30

P(J ) =(I.,O.)
Q(J) = (MU-I.)/(8.,_Z)
GO TO _0

FN2 = _._FN
FN4 = 2._FN2

FN21 = FN2 + 1.
FN41 = 2.W_FN21

IF(CABS(P(J-I)I.EQ.O.) GO TO 50

P(J) = -((MU-(FN4-3.)#_2) /(04._|FN2-1.)_FN2))_((MU-(FN4-I. )*w_2)IZ
$_'_ 2 )_P (J- 1 )

]F (J .GT. 2 .AND. CABS|P(J)) .GT. CABS(P(J-1)) ) P(J) = (0.,0.)
GO TO 55
P(J ) = (0.,0.}

IF(CABS(Q{J-I)].EQ.O.) GO TO 80

Q(J } = -( (MU- (FN4|-3.)_wk2) /(64.WWFN2_FN21) )_( (MU-(FN4I-I.)_2)/Z
$*_2)w_Q (j- l )

IF (J .GT. 2 .AND. C_BS(Q(J)) .GT. CABS(Q(J-I)) ) Q(J) = (O.,C).)

GO TO _0

Q(J ) = (0.,0.)

PSUM --P(J)+PSUM
QSUM = Q(J)+QSUM

IF(CABS(P(J)).EQ.O. .AND. CABS(Q(J)) .EQ. O.) GO TO 110
CONTINUE

CONTINUE
RETURN

END

$IBFTC BESSNN DECK

SUBRO UI INE ZEEBES( J,N, Z)

C

C THIS ROUTINE CALCULATES THE VALUE OF THE BESSEL FUNCTION OF THE

C FIRST KIND OF INTEGER OR)ER. THE ARGUMENT IS OF THE FORM
C C( I - SQRT(-I)) WHERE C IS A REAL CONSTANT LESS THAN 30 .
C
C

C
C

C

C

J...BESSEL FUNCTION VALUE

N .... BESSEL FUNCTION ORDER
Z...BESSEL FUNCTION ARGUMENT

COMPLEX J,Z

DDUBLE P_ECISION DFN,T,R(2) ,C,DK,D,B
D = REAL(Z)

15



C = D • 1._14213562373095D0
CR = O

DFN = FLOAT(N|
IF(N.NE,2} GO TO l

T = 5.D-!
GO TO 2

I T = l.OO

2 R(1) = T

R( 2 ) = O.OO

C = {C_W_2.) / 4,DO

OK = 0.00
[ = 1

M = 0

5 DK = OK ÷ I.O0

T = T • C / ((DK)'_(DK÷DFN)}
I = I ÷ I

IF (T.LT,DABSiRiI)*I.D-8|} GO TO 7

M = M ÷ I

B = I.DO

IF(M,GI.I) B = -|.DO

IF(M.EQ,3} M =-I

R(I) = R(I} + B _' T

IF(I.EQ.2) I = 0

GO TO 5

7 RR= R(I)
R| = R(2)
IF(N.NE.2) GO TO 8

R I = (-I.) • R(I} * C

RR =R(2) • C

8 J = CMPLX(RR,RI)

RETURN

END

$IEFTC SUBPHI DECK

COMPLEX FUNCTION PHI(J)

THIS PROGRAM CALCULATES A FUNCTION PHI WHICH IS AN
ATTENUATION PARAMETER.

COMMON/GEOMTYID(IOI,XL(IOI,V(IO) _DVDP(IO)

COMM3 N/THERM3/GAMMA ,P (I0) ,RHO(IO| ,Vl S(IO) , AMPRES
COMMON IXFREQ IFREC)

COMPLEX POLY,PHI,JRATIO

SN =6. _83 1854_FREQ*D [ JI*wW2*RHO( Jl IVI S ( jI

PHI =6. _831854*FREQ_ SQRT(R_IO (Jl / ( GAMMA=AMPRES | }

P CSQRT(I./JRATIO(CSQRT(CMPLX(O.O,-(SN/4,01)_ t !

P CSQR T(GAMMA/POLY(J) )

RETURN

END

16



$1BFTC SUBPL Y DECK

COMPLEX FUNCTION POLY(J)
C

C THIS ROUTINE CALCULATES A POLYTROPIC COEFFICIENT
C (LABELED iN' IN BERGH AND TIDJEMAN)

C

C]MMON/GEOMTY/D(IOI ,XL(XO) ,V(IO) ,DVDP(IO)
COqM3N/THERMD/GAMMA,P(IO) tRHO(IO),VISIIO),AMPRES

COMMg, N/XFREQ/FREQ

COMPLEX JRATIO,CARG,POLY
SN = &.283IB54X'FREQW_)(J)W_2*RHO(JI/VISIJ)

ARG = P(J )'wSNI4.0

CARG= CSQRT(CMPLX(O.O,-ARG))
POLY= [ .0/( X.O• ((GAMMA-[.O) IGAMMA)_'JRAT IO(CARG) )
RETURN

END

$1BFTC FCCO SH

COMPLEX

COMPL EX
CCO SH :

RETURN
END

DECK

FUNCTION CCOSH (ARG)

ARG,CCOSH
(CEXP(ARG)+CEXPI-ARGI)12o0

_IBFTC FCSINH DECK

COMPLEX FUNCTION CSINH(ARG)

COMPLEX _RG,C SINH

CSINH= (CEXP(ARG)-CEXP(-ARGI) /2.0
RETURN

END

I"/
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TABLE I. - PROPERTIES OF AIR

USED IN COMPUTATIONS (REF. 9)

Temperature, K

Pressure, N

Density, g/cm 3

[Viscosity, g/(sec)(cm

ISpecific heat ratio

295]
9.92 I

1.172×I0-3 I

1.824×10-41

1.4]

TABLE ]I. - Pt_OBE GEOMETRIES USED IN

CALCULATING EFFECTS OF AVERAGE

PRESSURE TUBES ON PROBE RESPONSE

[Probe length, 2.54 cm; probe volume ratio,

0; average pressure tubing lengths, 25,

102, and 203 cm.]

Probe

diameter,

cm

0.157 0. 051 0. 076 0. 101

• 317 . 076 . 127 . 177

• 476 .101 .152 .203

Average pressure tube diameter, cm

ZM =1

2.41 ___ L/rAverage total pressure tap

,'/////_zH/.,'.,'.,'/////////_ _ _ Pressure transducer

"-:- --.. I _

Probe AI, 0. 325 diamj/ _/,

ProbeA2, 0. 160diam /
L Cavityvolume

0. 558diam

Figure 1. - Basic (straight) probe. (Dimensionsare in centimeters.)
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Figure 2. - Perpendicularly mountedtransducerprobe.
(Dimenslonsare in centimeters.)

x- ,- Five-O 130diamholes . .
/ '_ $ " /- Cavity volume

r + H 111 O.091 y-- O.558diamr+O. 254-,,F G/ _t _

?\, _ /!/ rAnnulus _/////Z//////////////)
........................

o. 4-

r + 0. 558 _ " I k_ Pressure
•,- 2.54 =I transducer

Probe Dimensions

B1 0. 235 ......
B2 .2O8 ......
B3 .177 ......
B4 .177 0. 381
AI-0.10 ..........

Area ratios

Annulus area to
tube area ratio

0.87
1.30
1.80
1.80

Holearea to tube
area ratio

0.92
.92
.92
1.80

Measured resonant
frequency,

Hz

262O
2770
286O
3O3O
279O

Figure 3. - Baffle probedesign data. (Dimensionsare in centimeters.)
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I...J _

::_::V/////.&"_,

Reference pressure transducer-_

/

Pressure ports -<\
\

\

Resonator-""

Nozzle'----....

_Piston cable

Movable tuning piston

/_- Simulated probe
/ \

_ressure tra nsducer

II LCavity volume

L Connecting tubing
i

\'_) -_--_L Plugged port

i

12.54 cm)

"-- Sharp edge

_'

•"- Centert_y

_:_ "-Supply pressure measuring port
;.;,;.;<
!._i.S/Mf

/

_Alr inlet
5,//,

Figure 4. - Pressure generator.
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-180

-90
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endcorrection (ref. 4)_\
\

lllil

2 4 6 8 10 20 40 60
Frequency, Hz

Figure 5. - Frequency responseof probeAI-0. C_L

Analyticalcurve with /-----'--

end correcti_ (ref. 41_ l

I _ [____ I _
80 ]O0x]Oz

13

P

60--

[] AI probes

-- o A2 probes /

40 -- AnalytiCaIcurve(ref.4)_. //

Volume ratio, cavity volume/tube volume

Figure6. - Percent reduction in resonant frequency as
function of volume ratio. Analyticalcurve is the
averagevalues computedfor A] and A2 typeof probes.
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__ Analytical c.urvewi!h _ A)

-180 m

c -90 --

rg
.E
EL

0

Analytical curve with /'_

end correction (ref, 4)_-... Iv

1 ___.-_l I I It
2 4 6 8 10 20 40 60 80100x102

Frequency,Hz

Figure7.-Frequencyresponseofperpendicularlymountedtrans-
ducerprobe.

E

Q;
w

ro

24

I0

Averagepressu re
tube diameter,

-90F I I^L,.L,I,LL_L I I II Ilil
01 2 _-4"-_6 8 10 20 40 60 80100x102

Frequency,Hz

Figure 8. - Frequency response of two A1-0. 027probeswhich include
61 centimetersof average pressure tubihg.
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o

.6

.4

o Calculated points

o Measured data points

0

0

0

7:

• 16 8 10 20 40 60 80

O met parameter
Figure I0. - Average cyclic deviation of amplitude

ratio as function of geometry parameter for air
at atmospheric pressure and room temperature.
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o Probe B1

o Probe B2 A#_:_

-" Probe B3 ,_

I.J_Lt]

-iF
1

f
&=t__.L_l_l_., _ i I iI=l

4 6 8 i0 ZO 40 60 80100xi02

Frequency,Hz

Figure 11. -Frequency response of baffled probe configuration.

Figure 12. - Tube-volume system for the Bergh and Tijdemen equation.




